
Local Forward Model Learning 
for GVGAI Games
Alexander Dockhorn and Simon Lucas

Conference on Games 2020



The GVGAI Learning Competition 
- a competition by Hao Tong, Yang Tao and Jialin Liu -

General Video Game AI (GVGAI) Learning Competition:

• train an agent on a set of levels of an unknown games

• play other levels of the same game without having them seen

• game-states are provided in a pixel-based state observation

WaterpuzzleTreasurekeeperGolddigger



Local Forward Model

What are Local Forward Models?

• Local forward models map represent a decomposed prediction of the next state

• The prediction of each component is only dependent on its current state and the state 
of surrounding elements

Why do we use them?

• Due the decomposition we can gather multiple training examples per time-step

• We want to study search-based methods in these game-learning scenarios

How do we use them?



Prediction-based Search



Assumptions:

• structured representation of the state

• requires a similarity or distance function for sensor values

• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):

• a state can be represented as a matrix T of size n × m

• T(x, y) specifies the observed tile at position (x, y)

Modelling Local Dependencies

Game-State of Sokoban

Tilemap Components



Decompose the forward model into one sub-model per tile:

• 𝑁 tile wi 𝑥, 𝑦 𝑡 describes the local neighbourhood of tile 𝑇(𝑥, 𝑦) at time 𝑡

• it contains each th distance less than a given threshold

Local Transition Function

Game-State of Sokoban Local Neighbourhood Extracted Pattern(s)



Local Forward Model

Predict the next state by predicting each tile

In case the semantic of a tile is independent of its

position, only a single model needs to be learned

Advantage: higher sampling efficiency

• each observed state transition consists of one observed 
pattern per tile (in total: n × m patterns)

Local Transition Function



Motivation:

• Local forward models can be applied to pixel-based state representations but require 
a large neighbourhood pattern

• Increasing the number of pixels to be considered exponentially increases the number 
of observable patterns

• Preprocessing the pixel-based state representation may improve the efficiency of the 
training process

Pre-processing Pixel-based Input



Tilemaps Example[1]

[1] https://xnafantasy.wordpress.com/2008/11/22/xna-map-editor-version-30-released/



Pre-processing Pixel-based Input

Tile-size = 20

Tile-size = 10



Extracted tile-maps are compared given their number of unique tiles and their tile-size.

• a small number of unique tiles helps to keep the final model simple

• a large tile-size is desirable to reduce the size of the input matrix as much as possible

Which Tile-Size is Optimal?

Algorithm:

• For each divisor of the original dimensions 
we extract a tile-map

• To assure interpretable models we chose the 
minimal amount of unique tiles

• This resulted in a tile-size of 10 for all games



A score model is required to simulate the agent’s reward.

• Rewards in the GVGAI framework are bound to interactions between objects.

• events are triggered when two bounding boxes overlap

• which can result in the destruction/creation of objects and is associated with a reward

For each tile or object we extract the following values:

• its occurrence count in the state before the transition

• its occurrence count in the state after the transition

• the number of tiles/objects that have become this type

• the number of tiles/objects that are no longer of this type

Score Model



Score Model - Example

predicted result 

for action left

example state

waterpuzzle



Training models using random exploration has shown to be inefficient.

• the agent often visits the same states and applies the same actions

• many patterns remain unexplored

We are aware of all possible patterns but gathering labels costs time and resources

• possible solution: apply active learning techniques to increase the training efficiency

Active Learning Motivation



Implementation:

• During training the agent explores by choosing actions that yield the most 
unknown patterns

• In deterministic games, state-action pairs that have been explored will be 
simulated by the forward model to find interesting child states

Active Learning Example

Training (excluding symmetries) Evaluation



The evaluation is based on:

• three test games provided by the competition track, only the training levels are known

• six additional games have been chosen to evaluate the agent using unknown levels

• The agent has been trained using provided training levels and their symmetric 
counterparts

Evaluation Setup

Learning-track games offer 2 levels to be trained and tested on:

• performance values of various agents were published for comparison

• the agents’ training time is not limited by the competition rules

Our test games offer 2 levels to be trained on and 3 levels for evaluation:

• performance we compare the performance to search-based agents using the real 
forward model



Active Learning Results - Learning Track Games



Active Learning Results - Deterministic Games



Active Learning Results – Non-Deterministic Games



Deterministic Games:

• The agent was able to quickly learn a reliable model and play proficiently

Non-deterministic Games:

• Search-based methods struggled with the size of the possible state-space

• Probabilistic predictions have a low accuracy since the independency assumption 
is not fulfilled

Future Work:

• Explore the performance of other search-based methods with the trained models

• Map the model-building assumption (locality) to other models (e.g. DNN)

Conclusion



Thank you for your attention!

Interested in trying it yourself? Download the Code to this paper on Github
https://github.com/ADockhorn/Local-Forward-Model-Learning-for-GVGAI-Games

by Alexander Dockhorn and Simon Lucas
Email: {a.dockhorn, simon.lucas}@qmul.ac.uk

https://github.com/ADockhorn/Local-Forward-Model-Learning-for-GVGAI-Games

